Section 10.4 Fission and Fusion
(pages 308–315)

This section discusses nuclear forces and the conversion of mass into energy. It also describes the nuclear processes of fission and fusion.

Reading Strategy (page 308)
Comparing and Contrasting As you read, contrast fission and fusion in the Venn diagram below by listing the ways they differ. For more information on this Reading Strategy, see the Reading and Study Skills in the Skills and Reference Handbook at the end of your textbook.

Contrasting Fission and Fusion

Fission Fusion

Releases large amounts of energy

Nuclear Forces (pages 308–309)
1. Describe the strong nuclear force. ________________________________

2. Is the following sentence true or false? Over very short distances, the strong nuclear force is much greater than the electric forces among protons. ______________

3. Electric forces in atomic nuclei depend on ________________________.

4. Is the following sentence true or false? The strong nuclear force on a proton or neutron is much greater in a large nucleus than in a small nucleus. ______________

5. All nuclei with 83 or more protons are ______________.

Fission (pages 309–313)
6. Describe fission. __

7. Fission can produce very large amounts of energy from very small amounts of __________________._
8. Circle the letter that identifies what \(c \) represents in Einstein’s mass-energy equation, \(E = mc^2 \).
 a. the charge on a proton b. the speed of light
 c. the charge on an electron d. the specific heat of the material

9. Is the following sentence true or false? During nuclear reactions mass is not conserved, but energy is conserved.

10. Describe what can happen to a uranium-235 nucleus that absorbs a neutron.

11. Complete the following table.

<table>
<thead>
<tr>
<th>Chain Reactions</th>
<th>Description</th>
<th>Example of An Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncontrolled</td>
<td>All neutrons released during fission are free to cause other fissions.</td>
<td>Nuclear power plants</td>
</tr>
</tbody>
</table>

12. Describe a critical mass.

13. Is the following sentence true or false? Unlike power plants that burn fossil fuels, nuclear power plants do not emit air pollutants such as oxides of sulfur and nitrogen.

Fusion (page 315)

15. The state of matter in which atoms have been stripped of their electrons is ___________________.

16. Circle the letter of each main problem that scientists must face in designing a fusion reactor.
 a. Extremely high temperatures are necessary for a fusion reaction to start.
 b. The plasma that results from the reaction conditions must be contained.
 c. The hydrogen needed as a starting material is extremely scarce.
 d. Fusion reactions produce large quantities of radioactive waste.