Chapter 13 Forces in Fluids

Section 13.2 Forces and Pressure in Fluids
(pages 394–397)

This section presents Pascal’s and Bernoulli’s principles. It also discusses examples of each principle from nature and industry.

Reading Strategy (page 394)

Predicting Imagine two small foam balls hanging from strings at the same height with about 3 centimeters of space between them. Before you read the section, write a prediction about what will happen to the balls when you blow air through the space between them. Identify your reasons. After you have read the section, check the accuracy of your prediction. For more information on this Reading Strategy, see the Reading and Study Skills in the Skills and Reference Handbook at the end of your textbook.

<table>
<thead>
<tr>
<th>Predicting Forces and Pressure in Fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction</td>
</tr>
<tr>
<td>Reason for Prediction</td>
</tr>
</tbody>
</table>

Transmitting Pressure in a Fluid (pages 394–395)

1. In a fluid-filled container, the pressure is greater ______________ of the container. Circle the correct answer.
 - at the top
 - in the middle
 - at the bottom

2. Is the following sentence true or false? If you squeeze a container filled with fluid, the pressure within the fluid increases equally throughout the fluid. ______________

3. In a hydraulic lift system, an increased output force is produced because a constant ______________ is exerted on the larger area of the output piston.

4. Is the following sentence true or false? In a hydraulic system, the output force is greater than the input force because the pressure acting on the output piston is greater than the pressure acting on the input piston. ______________
Chapter 13 Forces in Fluids

Bernoulli’s Principle (pages 396–397)

5. Circle the letter of the sentence that correctly states Bernoulli’s principle.
 a. As the speed of a fluid decreases, the pressure within the fluid decreases.
 b. As the speed of a fluid increases, the pressure within the fluid increases.
 c. As the speed of a fluid increases, the pressure within the fluid decreases.

6. Because the air traveling over the top of an airplane wing moves faster than the air passing underneath the wing, the pressure above the wings is _______________ than the pressure below the wing.

For questions 7 through 10, refer to the figure below. Place the correct letter after each phrase.

7. Location where the water and fertilizer solution mix. _______________

8. Location where water enters the sprayer at high speed. _______________

9. Location where the water-fertilizer mixture exits the sprayer. __________

10. Circle the principle that explains why the fertilizer solution moves up the tube.
 a. Archimedes’ principle
 b. Bernoulli’s principle
 c. Pascal’s principle